	Potassium Chlorate 121																	
CC	MPONENT	S:		_	_											ORIGINAL MEASUREMENTS:		
(1	l) Sodi	um	ch	10	ri	de	;	Na	C1	;	[7	647-	-14-	-5]		Nallet, A.; Paris, R.A.		
(2	2) Pota	ssi	.um	С	h1	or	at	e;	K	C1	03	[3	3811	L - 04	4-9]	Bull. Soc. Chim. Fr. <u>1956</u> , 494-7.		
(3) Water; H ₂ 0; [7732-18-5]						J												
			-															
ı	RIABLES															PREPARED BY:		
ı	ompositi /K = 251		to	3	73										·	Hiroshi Miyamoto		
EX	(PERIMEN	ITAL	. V	AL	UE	s:										METHOD/APPARATUS/PROCEDURE:		
	Nature of the solid phase ^a	PERIMENTAL VALUES:				The procedure of equilibration and the method for analysis of the saturated solution were not described in the original paper, but the compiler assumes that the procedure and the method were similar to that given in ref (1). See the compilation of this paper for the KC1-KC103-H20 system.												
	ure (id pl	A+C+I	A+C	Ŧ	A+C	Ξ:	=	A+B+	£:	: :	: :	=						
	Nat sol	•			¥								SOURCE AND PURITY OF MATERIALS:					
tions	Density g cm ⁻³	1.205	1.2085	1.188	1.221	611.1	1.061	1.233	1.235	1.2437	1.260	1.338				The source and purity of materials were not reported in the original paper, but probably similar to that described in ref (1).		
	<u>,</u> ω	_									_ ,							
	mol % (compiler)	0.461	0.512	0.486	0.700	0.548	0.538	0.902	1.245	2.087	3.344	9.69 9.69				ESTIMATED ERROR:		
solu	ate r) (Nothing specified.		
saturated solutions	assium chlorate 120 mass % (compiler) (2.56	2.83	2.74	3.78	3.29	3.42	4.17	6.45	10.33	15.49	33.9		Ice	9			
l	Potass OgH2O													B		REFERENCES:		
Composition of	$^{\rm Pota}_{\rm g/100gH_2}$	2.63	2.91	2.82	3,93	3.40	3.54	5.01	6.90	11.52	18.33	51.4		3; I		1. Nallet, A.; Paris, R.A. Bull. Soc. Chim. Fr. <u>1956</u> , 488.		
Comp	mol % (compiler)	8.77	9.00	7.93	9.71	4.50	1.75	10.45	10.7	11.3	12.2	16.9		$c = KC10_3;$				
	Sodium chloride H20 mass % (compiler)	23.3	23.7	21.3	25.0	12.9	5.31	26.34	26.5	70.0	0.12	28.2		B = NaCl;				
	$_{\rm g/100gH_20}$	30.3	31.3	27.1	33.4	14.8	5.61	35.75	36.0	36.3	37.0	39.3		NaC1.2H20;				
	t/°C	- 22.0	- 19.2	- 19.2 9.2		χ. 			0T +		+ -	+100		A = Na(

- (1) Potassium nitrate; KNO3; [7757-79-1]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Toda, S.

Nippon Kagaku Kaishi (J. Chem. Soc. Japan), 1922, 43, 320-28; Mem. Coll. Sci. Kyoto Imp. Univ. 1922, 377-82.

VARIABLES:

Composition

T/K = 298 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES: anition of anturated colutions

 ***************************************	Composition			
Potassium mass %	Chlorate mol % (compiler)	Potassium mass %	m Nitrate mol % (compiler)	Nature of the solid phase ^a
7.745 ^b	1.219	-	-	Α
7.65 7.07 6.52 5.76 5.10 4.39 3.90	1.21 1.12 1.05 0.949 0.881 0.800 0.771	0.68 1.15 3.59 7.12 12.81 18.97 27.14	0.13 0.220 0.699 1.42 2.682 4.190 6.503	C "" "" ""
3.90 3.90 3.90 3.61	0.771 0.771 0.771 0.712	27.12 27.14 27.16 27.21 27.57	6.496 6.503 6.509 6.503 6.468	C+B " " B
1.63	0.315	27.24	6.254	11

 $a = KC10_3;;$

 $B = KNO_3;$

C - Solid solution K(C103,N03)

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Mixtures of the salts were placed in Erlenmeyer flasks of capacity about 30 cm³ with well ground stoppers. Flasks were rotated in a thermostat for about 2 days. When equilibrium was attained, the solutions were permitted to settle in the thermostat and satd solution removed by pipet through a short glass tube with a purified cotton wool filter. Exactly 10 $\rm cm^3$ of the solution was diluted with about 30 $\rm cm^3$ of water, treated with 40 cm3 of 10 % aqueous ferrous fulfate and boiled for about 15 minutes. Aqueous ammonia which was absolutely free from chlorine was added to the solution, and the solution gently boiled until the excess ammonia was expelled. The ppt was filtered and washed 5 times with hot water. The filtrate was used for the determination of chloride by a modified Volhard method (1). Potassium was detd as the sulfate by sulfuric acid as described in (2). The composition of the solid phase was also determined by the same method.

SOURCE AND PURITY OF MATERIALS:

Both potassium chlorate and nitrate (Japan Pharmacopeia) were recrystallized three times.

Distilled water was used.

ESTIMATED ERROR:

Nothing specified.

- 1. Rothumund, V.; Burgstaller, A.
- Z. Anorg. Chem. 1909, 63, 330.
 Treadwell, F.P.; Hall, W.T. Analytical Chemistry Vol II. 1915. p41.

b For the binary system the compiler computes the following: soly of $KC10_3 = 0.6850$

- (1) Potassium sulfate; K₂SO₄; [7778-80-5]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.; Yanick, N.S.

J. Am. Chem. Soc. 1937, 59, 491-6.

VARIABLES:

Composition and temperature

T/K = 288.15, 298.15, 318.15

PREPARED BY:

Hiroshi Miyamoto

EXPERIME	ENTAL VALUES:	Compos	ition of sat	urated solution	ns	
		C10 ₃		2 ⁸⁰ 4	Density	Nature of the
t/°C	mass %	mol % (compiler)	mass %	mol % (compiler)	g cm ⁻³	solid phase ^a
15	0.00	0.00	9.258	1.044	1.076	Α
	3.29 3.29 3.29	0.537 0.537 0.537	7.86 7.86 7.86	0.901 0.901 0.901	1.085 1.084 1.085	A+B ''
	5.676 ^b	0.877	0.00	0.000	1.032	В
25	0.00 1.80 3.30	0.00 0.295 0.547	10.76 9.93 9.43	1.231 1.15 1.10	1.083 1.089 1.099	A "
	4.95 4.96 4.96 4.96	0.827 0.828 0.828 0.828	8.66 8.62 8.62 8.64	1.02 1.01 1.01 1.01	1.102 1.100 1.099 1.100	A+B '' ''
	5.06 5.77 6.72 7.897 ^b	0.842 0.942 1.08 1.245	8.19 5.57 2.73 0.00	0.958 0.639 0.307 0.00	1.099 1.080 1.063 1.048	B "
45	0.00	0.00	13.53	1.592		Α
	9.80 9.80 9.80	1.73 1.73 1.73	9.13 9.12 9.13	1.13 1.13 1.13		A+B ''
	13.90 ^b	2.318	0.00	0.00		В

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Weighed mixtures of known composition were brought to equilibrium by stirring at the desired temperature. The time required for attainment of equilibrium was determined by analysis, and required several days. The order of mixing of the components, and the process of seeding or inoculation for required phases had to be varied in accordance with the phase sought.

In one sample of the saturated solution, chlorate was determined by the method of Peters and Deutshlander (1): to the chlorate sample (containing about 0.11g of ClO₃⁻) is added a definite volume (50 cm³) of 0.05 mol dm⁻³ arsenious oxide solution. After the addition of a trace of KBr, the solution is acidified strongly with HCl and boiled for ten minutes. The excess arsenious oxide is then titrated by means of 0.033 mol dm⁻³ KBrO₃ using indigo sulfonic acid indicator.

continued....

SOURCE AND PURITY OF MATERIALS:

Nothing specified.

ESTIMATED ERROR:

Soly: nothing specified. Temp: precision ± 0.02 K.

REFERENCES:

 Kolthoff, I.M.; Furman, N.H. Volumetric Analysis, Vol. 2 John Wiley and Sons. New York. 1929. p 465.

- (1) Potassium sulfate; K₂SO₄; [7778-80-5]
- (2) Potassium chlorate; KClO₃; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.; Yanick, N.S.

J. Am. Chem. Soc. 1937, 59, 491-6.

EXPERIMENTAL VALUES: (Continued)

^a
$$A = K_2SO_4$$
;

$$B = KC10_3$$

b For the binary system the compiler computes the following:

soly of KC103 =
$$0.4910 \text{ mol kg}^{-1}$$
 at 15°C

- $= 0.6996 \text{ mol kg}^{-1} \text{ at } 25^{\circ}\text{C}$
- = 1.317 mol kg-1 at 45°C

METHOD/APPARATUS/PROCEDURE: (Continued)

In other samples the total solid was determined by evaporation to dryness at 100°C followed by 250°C , and the sulfate was then calculated by difference.

For the identification of known solid phases, microscopic examination and algebraic extrapolation of tie-lines sufficed.

The densities reported for some of the isotherms were obtained by means of volumetric pipets calibrated for delivery.

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram is given below (based on mass % units).

- (1) Potassium chlorate; KClO₃; [3811-04-9]
- (2) Potassium chloride; KC1; [7446-40-7]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Winteler, F.

Z. Electrochem. 1900, 7, 360-2.

VARIABLES:

VIIICEIIDDDD

T/K = 293

Concentration of KC1 (see comments below)

PREPARED BY:

Hiroshi Miyamoto and Mark Salomon

EXPERIMENTAL VALU	ES: Composition of	saturated sol	lutions at 20°C	
	conen KCl		KC103	Density
g dm	-3 c ₂ /mol dm ⁻³ (compiler)	g dm ⁻³	c ₁ /mo1 dm ⁻³ (compiler)	g cm ⁻³
0	0	71.1	0.580	1.050
10	0.134	58	0.47	1.050
20	0.268	49	0.40	1.050
30	0.402	43	0.35	1.050
40	0.537	39.5	0.322	1.054
50	0.671	36.5	0.298	1.058
60	0.804	34	0.28	1.064
70	0.939	32	0.26	1.070
80	1.07	30	0.24	1.075
90	1.21	28	0.23	1.081
100	1.34	27	0.22	1.086
110	1.48	25.5	0.208	1.091
120	1.61	24.5	0.200	1.098
130	1.74	23.5	0.192	1.103
140	1.88	22.5	0.184	1.108
150	2.01	21.5	0.175	1.113
160	2.15	21.0	0.171	1.119
170	2.28	20.5	0.167	1.124
180	2.41	20.0	0.163	1.130
190	2.55	20.0	0.163	1.135
200	2.68	20	0.16	1.140
210	2.82	20	0.16	1.145
220	2.95	20	0.16	1.150
230	3.09	20	0.16	1.156
240	3.22	20	0.16	1.161
250	3.35	20	0.16	1.168
230	3.33	20	0.10	1.100

The composition of the solid phase is not given in the original paper.

METHOD/APPARATUS/PROCEDURE:

Mixtures of salts and water were placed into a thermostat at 20°C for several days and shaken frequently. Aliquots of the saturated solution were acidified with nitric acid and then titrated with silver nitrate using potassium chromate as an indicator. The compiler assumes that the total salt concentration of the solution was determined gravimetrically, and that the chlorate content was determined by difference.

It appears that the concentrations of KCl given in the above data are initial concentrations (compilers).

SOURCE AND PURITY OF MATERIALS:

No information was given.

ESTIMATED ERROR:

Nothing specified.

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Di Capua, C.; Scaletti, U.

Gazz. Chim. Ital. 1927, 27, 391-9.

VARIABLES:

T/K = 293

PREPARED BY:

B. Scrosati and H. Miyamoto

EXPERIMENTAL VALUES:

Composition of saturated solutions at $20\,^{\circ}\text{C}^{2}$

K	CC1	KC1	0,
mass %	mol % (compiler)	mass %	mol % (compiler)
0	0	6.75 ^b	1.05
1	0.3	6	0.9
2	0.5	5	0.8
3	0.8	4	0.6
5	1	3.2	0.50
6.5	1.7	3	0.5
9	2	2.5	0.40
12	3.3	2.2	0.36
15	4.2	2	0.3
19	5.5	1.85	0.324
22	6.5	1.5	0.27
25	7.5	1.2	0.22
26.08	7.856	0	0

a Nature of solid phases not reported.

soly of $KC10_3 = 0.591 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The mixtures of salts and water were stirred in a thermostat for 7 days. Samples of saturated solutions were withdrawn with a pipet and weighed.

The chlorate ion concentration was determined by the Volhard method after reduction to chloride ion with zinc and acetic acid. Probably, the potassium content was determined by precipitation as the triple acetate of potassium, uranyl and magnesium, according to the method described by Kling and Lasieur (ref 1).

SOURCE AND PURITY OF MATERIALS:

No information given.

ESTIMATED ERROR:

Nothing specified.

REFERENCES:

 Kling and Lasieur. Giorn. Chim. Ind. Applicata 1925, 7.

b For the binary system the compiler computes the following:

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732+18-5]

ORIGINAL MEASUREMENTS:

Fleck, J.

Bull. Soc. Chem. Fr. <u>1937</u>, Ser. 5, 4, 558-60 (see also Bull. Soc. Chem. Fr. <u>1936</u>, Ser. 5, 3, 350).

VARIABLES:

Composition

T/K = 273.2 to 323.2

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL	VALUES:	Compositio	n of satur	ated solution	s	
t/°C	mass %	<pre>KC1 mo1 % (compiler)</pre>	mass %	C10 ₃ mo1 % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
0	0.00 8.47 16.21	0.00 2.21 4.502	3.05 ^b 1.09 0.82	0.460 0.173 0.14	1.022 1.068 1.121	A "
	21.16	6.135	0.71	0.13	1.157	A+B
	21.90	6.346	0.00	0.00	1.153	В
20	0.00 2.84 7.44 13.47 20.26	0.00 0.735 1.97 3.711 5.888	6.78 ^b 5.18 3.74 2.44 1.75	1.06 0.815 0.603 0.409 0.309	1.044 1.051 1.070 1.106 1.153	A "' " " "
	24.58 24.63	7.421 7.440	1.55 1.55	0.285 0.285	1.184 1.185	A+B
	25.17 25.70	7.588 7.714	0.89 0.00	0.16 0.00	1.183 1.176	B "
30	0.00 4.67 9.45 11.03 13.06 17.86	0.00 1.24 2.57 3.032 3.634 5.151	9.24 ^b 6.62 4.82 4.38 3.82 3.12	1.47 1.07 0.799 0.733 0.647 0.547	1.058 - 1.088 1.097 1.108 1.140	A " " " !!

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The system was studied by the isothermal method.

The KC103 was added to the solution, saturated with KC1 and stirred to establish equilibrium.

The chloride content was determined by Volhard's method. For determination of chlorate, a weighed amount of saturated solution was added to excess FeSO4 solution and titrated with permanganate solution. The densities were also determined.

SOURCE AND PURITY OF MATERIALS:

Potassium chlorate and chloride were purchased from Poulence. No other information was given in the paper.

ESTIMATED ERROR:

Soly: nothing specified. Temp: precision \pm 0.1 K.

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KClO₃; [3811-04-9]
- (3) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Fleck, J.

Bull. Soc. Chem. Fr. <u>1937</u>, Ser. 5, 4, 558-60 (see also Bull. Soc. Chem. Fr. <u>1936</u>, Ser. 5, 3, 350).

EXPERIMENTAL VALUES: (Continued)

Composition of saturated solutions

t/°C	mass %	CC1 mol % (compiler)	KC mass %	10 ₃ mol % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
30	25.81	7.948	2.29	0.429	1.198	A+B
	25.86	7.967	2.29	0.429	1.197	''
	26.64	8.143	0.87	0.16	1.190	B
	27.30	8.319	0.00	0.00	1.182	''
40	0.00 4.60 7.66 8.71 10.76 13.16 18.43 20.66	0.00 1.25 2.11 2.41 3.010 3.725 5.408 6.162	11.65 ^b 9.20 7.64 7.25 6.39 5.44 4.30 3.88	1.902 1.53 1.28 1.22 1.09 0.937 0.768 0.704	1.074 1.084 1.092 1.098 1.106 1.116 1.148 1.165	A "" "" "" "" ""
	26.49	8.289	3.15	0.600	1.206	A+B
	26.45	8.273	3.14	0.597	1.206	''
	27.74	8.633	1.54	0.292	1.196	B
	28.75	8.884	0.00	0.00	1.188	''
50	0.00 8.51 17.55 18.53	0.00 2.41 5.199 5.526	14.76 ^b 9.66 6.01 5.76	2.482 1.66 1.08 1.04	1.088 1.105 1.147 1.155	A "
	27.45	8.800	4.46	0.870	1.214	A+B
	28.24	9.003	3.27	0.634	1.207	B
	30.18	9.457	0.00	0.00	1.194	B

 $a = KC10_3$ B = KC1

soly of KC10₃ = 0.257 mol kg⁻¹ at 0°C

=
$$0.593 \text{ mol kg}^{-1}$$
 at 20°C

$$= 0.831 \text{ mol kg}^{-1} \text{ at } 30^{\circ}\text{C}$$

= 1.076 mol
$$kg^{-1}$$
 at 40°C

= 1.413 mol
$$kg^{-1}$$
 at 50°C

 $^{^{\}mbox{\scriptsize b}}$ For the binary system the compiler computes the following:

COMPONENTS: (1) Potassium chloride; KC1; [7447-40-7] (2) Potassium chlorate; KC103; [3811-04-9] (3) Water; H₂0; [7732-18-5] VARIABLES: T/K = 293, 323 and 348 ORIGINAL MEASUREMENTS: Donald, M.B. J. Chem. Soc. 1937, 1325-6.

EXPERIMENTAL VALUES:

Composition of saturated solutions at invariant points^a

t/°C	mass %	<pre>KC1 mol % (compiler)</pre>	mass %	KC10 ₃ mo1 % (compiler)	Density g cm ⁻³
20	25.0	7.58	1.56	0.288	1.177
50	28.3	9.14	4.32	0.648	1.211
75	29.3	9.99	8.08	1.68	1.244

^a Nature of the solid phases not specified.

METHOD/APPARATUS/PROCEDURE: The objective of this study was to determine the solubilities at the invariant points. The chloride was estimated by Mohr's method, the chlorate by Rupp's method (1), and the water by direct weighing. No other information is given in the original paper. ESTIMATED ERROR: Nothing specified. REFERENCES: 1. Rupp, E. Z. Anal. Chem.

1917, 56, 580.

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Benrath, A.; Braun, A.

Z. Anorg. Allg. Chem. 1940, 244, 348-58.

VARIABLES:

T/K = 423, 448 and 473

Composition

PREPARED BY:

Hiroshi Miyamoto and Mark Salomon

XPERIMENTAL	VALUES:	Composition	n of saturat	ed solutions	
t/°C	Potassium mass %	Chloride mol % (compiler)	Potassium mass %	Chlorate mol % (compiler)	Nature of the solid phase
150	34.7 34.4 31.7 28.5 26.0 18.22 16.90 4.97	12.9 12.9 12.6 11.8 11.4 8.175 7.562 2.26	10.40 10.88 17.80 23.7 29.5 37.9 38.9 50.6	2.359 2.475 4.305 5.99 7.87 10.3 10.6 14.0	KC1 " " " KC10 ₃
175	35.5 32.3 26.6	13.9 13.3 12.2	13.14 19.95 32.0	3.122 5.014 8.95	KC1
	20.5 20.4 20.0	10.7 10.9 10.7	44.9 46.0 46.3	14.3 14.9 15.0	KC1 + KC10 ₃
200	9.28 38.5 35.6 25.2 21.6 14.55	4.95 15.4 14.7 12.3 11.7 8.903	55.9 12.3 16.8 36.8 45.9 58.0	3.00 4.21 10.9 15.2 21.6	KC10 ₃ KC1 " " " "
	5.76 3.29	3.59 2.08	66.6 69.4	25.2 26.6	KC1 + KC103 KC103

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

a 40-50 mg mixture of KC1 + KC103 and water was placed in a 5 cm long glass tube (inner diam = 1.5 mm) and sealed. The tube was heated in a vertical position at the desired temperature.: the method of ascertaining equilibrium not specified. The tube was then rotated permitting the solution to flow to one end and due to the small diameter of the tube, the solids remained in the other end of the tube. The tube was cooled and broken just below the solid residues. Each part of the tube was weighed and dried by heating to dryness. The dried products were weighed and dissolved in nitric acid, and the chloride content determined gravimetrically by precipitation with silver nitrate.

SOURCE AND PURITY OF MATERIALS: Nothing specified.

ESTIMATED ERROR:

Nothing specified.

COMMENTS AND/OR ADDITIONAL DATA:

Using literature values for solubilities and melting points of 2 component and 1 component systems, the author prepared Janecke phase diagrams and polytherms. From these diagrams the azeotrope points were determined. The phase diagrams are reproduced on the following page. In these diagrams, m is the moles of water per mole of KCl + KClO3, and x is the mole fraction of KCl in the total KCl + KClO3 content.

continued....

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Benrath, A.; Braun, A.

Z. Anorg. Allg. Chem. 1940, 244, 348-58.

COMMENTS AND/OR ADDITIONAL DATA: (Continued)

		_	mass				
	point on polytherm	t/ ^O C	KC1	KC103	x	m	phases present
-	E	-11.8	19.8	0.42	98.6	6.9	sln, ice, vapor, KC1, KC10 $_3$
	A	-10.7	19.82		100	17.02	sln, ice, vapor, KCl
	С	-0.8		2.97	0	220.8	sln, ice, vapor, KClO ₃
	D	356			0	0	m.p. of $KC10_3$
	F	336			12.0	0	m.p. of $KC1-KC10_3$ eutectic
-	В	771			100	0	m.p. of KCl

132		Potassium	m Chlorate			
CON	IPONENTS	:	ORIGINAL MEASUREMENTS:			
(1)	Potas	sium chloride; KC1; [7447-40-7]	Nallet, A.; Paris, R.A.			
(2)	Potas	sium chlorate; KC103; [3811-04-9]	Bull. Soc. Chim. Fr. <u>1956</u> , 488-94.			
(3)	Water	; H ₂ O; [7732-18-5]				
	IABLES:		PREPARED BY:			
1	positio	n 30 to 373	Hiroshi Miyamoto			
		AL VALUES:	METHOD/APPARATUS/PROCEDURE:			
	Nature of the solid phase	A+B	Mixtures of salts and water were placed in bottles and shaken in a thermostat for 2 hours at 100°C and for 2 hours or more at lower temperatures. Equilibrium was approached from supersaturation. The chloride ion concentration was determined by a potentiometric method using silver nitrate solution. After the determination of chloride, the chlorate was reduced with Mohr's salt in mineral acids, and the excess			
	Density Nag cm ⁻³ sc	1.139 1.43 1.1295 1.062 1.1709 1.1937 1.215 1.240	Fe(II) titrated with potassium dichromate solution. The analyses of cations were performed in duplicate. The potassium content was determined by flame photometry and gravimetry. The nature of the solid phase was determined by Schreinemakers' residues method. The densities of the saturated solution were also measured.			
lutions	ate mol % (compiler)	0.11 0.11 0.111 0.175 0.297 0.634 1.39 2.614 6.105	SOURCE AND PURITY OF MATERIALS: Potassium chlorate and chloride were recry-			
saturated solutions	chlor ss %	0.53 0.56 0.562 0.959 1.42 3.11 5.97 10.4	stallized twice. The purity of the salts was 99.9 %.			
Composition of sa	Potassium g/100gH ₂ 0 ma		ESTIMATED ERROR: Soly: precision 0.5 % (compiler). Temp: nothing specified.			
sodu		2 2	REFERENCES:			
Co	ride mol % (compiler)	5.55 5.66 5.086 2.13 7.120 8.48 9.91 11.4 14.5				
	Potassium chloride 0 mass % m (co	9.5 8.07 8.20 3.80 7.0 9.7 1.7				
	Pota g/100gH ₂ 0	24.2 24.7 22.05 8.93 31.23 37.0 46.5 51.8 8 = KC10 ₃ ;				
	J°/1	- 10.85 - 9.8 - 9.8 - 4 + 10 + 30 + 70 + 100 + 100 a A = KC1;				

COMPONENTS: (1) Potassium chloride; KC1; [7447-40-7] Munter, P.A.; Brown, R.L. (2) Potassium chlorate; KC103; [3811-04-9] J. Am. Chem. Soc. 1943, 65, 2456-7. (3) Water; H₂0; [7732-18-5] VARIABLES: Composition T/K = 273.2

EXPERIMENTAL VALUES:

Composition at the isothermally invariant point at 0.0°C

Potassi	um chloride	Potassi	m chlorate	Water		
mass %	mo1 % (compiler)	mass %	mol % (compiler)	mass %	mol % (compiler)	
21.36	6.204	0.71	0.13	77.93	93.67	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Mixtures of the solid salts and water sealed in Pyrex bottles were fastened to a rotor suspended in a constant temperature bath. An aq glycerol solution was used as the bath liquid. A preliminary experiment was carried out in which an original mixt of the solid salts and water was gradually augmented by small additions of salt until the density and composition of the resultant solution became constant. From these data, mixtures of the solid salts and water known to result in satd solutions were prepd for the final test. The equilibrated solutions were sampled by withdrawing clear supernatant solution through cotton filtering plugs directly into a density pipet. After determining the density, the samples were diluted. The chloride content was detd by the Volhard method as modified by Caldwell and Moyer (ref 1). The chlorate content was detd by the method of Dietz as described by Kolthoff and Furman (ref 2). The water content was found by difference.

SOURCE AND PURITY OF MATERIALS:

All the salts used were of c.p. grade and were used without further purification. The chlorate was found to be average 99.9 % pure.

ESTIMATED ERROR:

Soly: nothing specified.

Temp: precision \pm 0.1 K (authors).

- Caldwell, J.R.; Moyer, H.V. Ind. Eng. Chem. Anal. Ed. <u>1935</u>, 7, 38.
- Kolthoff, I.M.; Furman, N.H. Volumetric Analysis Vol. 11, 1929, 388.

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Turnetskaya, A.F.; Lepeshkov, I.N.

Zh. Neorg. Khim. 1965, 10, 2163-6; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 1176-8.

VARIABLES:

T/K = 298 and 323

Composition

PREPARED BY:

Hiroshi Miyamoto

EXPERIM	ENTAL VALUE	S: Com	position of	saturated solut	ions	
t/°C	Potassium mass %	mol % (compiler)	Potassium mass %	clorate mol % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
25	26.33	7.950	0.00	0.00	1.1798	A
	26.26	7.949	0.30	0.055	1.1877	11
	25.91	7.935	1.7	0.32	1.189	11
	25.85	7.968	2.35	0.441	_	A+B
	25.84	7.962	2.32	0.435	-	11
	25.59	7.871	2.38	0.445	_	**
	25.63	7.891	2.43	0.455	-	**
	25.56	7.861	2.40	0.449	1.189	**
	25.78	7.950	2,45	0.460	_	11
	25.58	7.871	2.42	0.453	_	†1
	25.54	7.853	2.39	0.447	1.1732	11
	21.11	6.228	2.44	0.438	1.1567	В
	17.27	4.933	2.7	0.47	1.1348	tt
	11.95	3.280	3.4	0.57	-	H
	5.17	1.36	4.9	0.78	1.0645	**
	1.34	0.344	5.83	0.912	1.058	tt
	0.00	0.00	7.99 ^b	1.26	1.0568	11

continued....

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. At 25°C equilibrium in the system was reached after 4-5 days. The potassium was determined gravimetrically with sodium tetraphenyl-borate. At high concentrations, chloride was determined volumetrically by mercurimetric method, and at low concentrations chloride was detd gravimetrically. C103 was determined volumetrically after reduction to chloride with zinc dust.

SOURCE AND PURITY OF MATERIALS:

KClO₃ and KCl were recrystallized twice and had a purity of 99.7 - 99.8 %.

ESTIMATED ERROR:

Nothing specified.

- (1) Potassium chloride; KCl; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Turnetskaya, A.F.; Lepeshkov, I.N.

Zh. Neorg. Khim. <u>1965</u>, 10, 2163-6; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1965</u>, 10, 1176-8.

EXPERIMENTAL VALUES: (Continued)

Composition of saturated solutions

t/°C	Potassium mass %	chloride mo1 % (compiler)	Potassium mass %	Chlorate mol % (compiler)	Density g cm ⁻³	Nature of the solid phase ^a
50	30.06 29.67	9.409 9.359	0.00 1.05	0.00 0.201	1.194 1.196	A ''
	28.30	9.204	4.97	0.983	1.216	A+B
	19.84 7.2 2.88 0.00	6.098 2.1 0.814 0.00	7.42 12.04 14.41 15.84 ^b	1.39 2.100 2.477 2.692	1.166 1.1067 1.097 1.091	B "

^a A = KC1; B = KC10₃

soly of KC10₃ = 0.709 mol
$$kg^{-1}$$
 at 25°C
= 1.536 mol kg^{-1} at 50°C

^b For the binary system the compiler computed the following:

COMPONENTS: (1) Potassium chloride; KCl; [7447-40-7]

(2) Potassium chlorate; KC103; [3811-04-9]

(3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Arkhipov, S.M.; Kashina, N.I.; Kuzina, V.A.

Zh. Neorg. Khim. <u>1969</u>, 14, 567-70; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1969</u>, 14, 294-6.

VARIABLES: Composition

T/K = 298.2

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES: Composition of saturated solutions at 25.0°C

_	tassium ss %	chlorate mol % (compiler)	Potassium mass %	n chloride mol % (compiler)	Nature of the solid phase ^a
7.	93 ^b	1.25			A
	21	0.979	1.95	0.505	11
	65	0.741	5.04	1.32	11
	07	0.664	8.54	2.29	11
	11	0.518	11.89	3.253	· ·
	80	0.478	15.06	4.222	11
	53	0.443	18.40	5.300	11
	00	0.362	22.47	6.683	11
	93	0.360	25.91	7.955	**
1.	94	0.363	26.10	8.029	A+B
	92	0.359	26.10	8.027	**
1.	33	0.248	26.29	8.049	В
			26.72	8.098	11

^a $A = KC10_3$; B = KC1

soly of $KC10_3 = 0.703 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. The solids (KC103 and KC1) and water were placed into glass test-tubes held in a thermostat. The rate of rotation of the test-tubes was 45 rev min-1, and equilibrium was reached in 30 hours. Potassium in the liquid phase was analyzed by flame photometry. Chloride was determined by titration of a specimen of the solution with silver nitrate by using potassium chromate as an indicator. The chlorate ion concentration was determined volumetrically by addition of an excess of iron(II) sulfate solution and back-titration of the latter with potassium permanganate solution. The solid phases were identified by the method of residues, crystal optics, and by X-ray diffraction.

SOURCE AND PURITY OF MATERIALS:

The purity of KClO3 and KCl was within 99.9 %.

ESTIMATED ERROR:

Soly: the relative error in potassium determination by flame photometry did not exceed 3-5 %.

Temp: precision \pm 0.1 K (authors).

b For the binary system the compiler computes the following:

- (1) Potassium chloride; KC1; [7447-40-7]
- (2) Potassium chlorate; KC103; [3811-04-9]
- (3) Potassium perchlorate; KC104; [7778-74-7]
- (4) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Karnaukhov, A.S.; Lepeshkov, I.N.; Fursova, A.F.

Zh. Neorg. Khim. 1969, 14, 2211-3; Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 1160-1.

VARIABLES:

T/K = 323

Composition

PREPARED BY:

Hiroshi Miyamoto

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram of the $KC10_3-KC10_4-H_20$ system at $50^{\circ}C$ is given below (based on mass % units).

continued....

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. At 25°C equilibrium was reached in 4-5 days. The potassium content was determined gravimetrically with tetraphenylborate. The chlorate ion concentration at high concentrations was determined volumetrically by the mercurimetric method, and at lower concentrations, gravimetrically. The chlorate ion concentration was determined volumetrically after reduction to chloride with zinc dust. The compositions and the nature of the solid phases were found by chemical analysis with Schreinemakers' method of residues and checked by X-ray diffraction.

SOURCE AND PURITY OF MATERIALS:

Potassium chloride and chlorate were recrystallized twice. The resulting purity was 99.7 - 99.8 %.

ESTIMATED ERROR:

Nothing specified.

29.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "	obstassium Chlorate mass X Potassium Chlorate mass X Potassium Perchlorate mass X Density mass X Nature of the g cm ⁻³ Solid phase ^a 9,67 9.385 1.27 0.216 1.197 DHC 1.27 0.216 1.197 DHE 1.27 0.216 1.197 DHE 1.27 0.216 1.197 DHE 1.27 0.216 1.197 DHE 1.27 0.213 1.00 0.174 " " 1.24 1.24 1.28 1.24 1.28 1.24 1.28 1.24 1.28 1.216 AHB 1.216 AHB 1.216 AHB 1.22		PERIMEN	Nature of the							
29.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "		21	solid phase ^a		mol %		mo1 %		mo1 %	
29.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "		TA	P1C	1 107	•	1 27	-		•	29 67
29.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "	9.24 9.450 2.56 0.503 1.00 0.174 "										
28.17 9.213 4.64 0.923 0.91 0.160 1.218 D+E+B 28.30 9.204 4.97 0.983 1.216 A+B 28.30 9.204 4.97 0.983 1.216 A+B 28.04 9.286 5.68 1.144 1.06 0.189 E+B 27.06 5.177 7.21 1.331 1.47 0.240 1.163 " 28.31 2.44 11.35 2.022 1.798 1.68 0.266 1.120 " 28.32 2.44 11.35 2.022 1.70 0.268 1.120 " 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 " 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 " 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 " 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 " 2.08 0.596 14.25 2.484 2.22 0.355 0.547 3.51 0.479 " 2.44 0.623 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.355 0.0547 3.51 0.479 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.053 3.43 0.475 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.997 0.34 0.050 3.10 0.432 " 3.72 0.999 0.29 0.047 2.85 0.405 " 3.72 0.999 0.29 0.047 2.85 0.405 " 3.72 0.999 0.29 0.047 2.85 0.405 " 3.72 0.999 0.29 0.047 2.85 0.405 " 3.73 0.06 0.011 1.44 0.236 E+D+C 3.75 0.050 0.011 1.44 0.236 E+D+C	18.17 9.213 4.64 0.923 0.91 0.160 1.218 D+E+B 18.30 9.204 4.97 0.983 1.216 A+B 18.30 9.204 4.97 0.983 1.216 A+B 18.30 9.205 5.68 1.144 1.06 0.189 E+B 18.30 9.205 5.68 1.144 1.06 0.189 " 18.33 2.44 11.35 2.022 1.70 0.268 1.120 " 18.33 2.44 11.35 2.022 1.70 0.268 1.120 " 18.33 2.44 11.35 2.022 1.70 0.268 1.120 " 18.31 1.82 12.36 2.187 1.87 0.293 " 18.32 12.36 2.187 1.87 0.293 " 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 " 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 " 15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 1.67 0.423 0.355 0.0543 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 1.61 0.61 0.62 0.011 1.44 0.236 " 1.753 1.99 0.29 0.047 2.85 0.405 " 1.8 E+D+C 1.9 99 9.415 0.33 0.056 A+D 1.8 E-C104: B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	8.17 9.213 4.64 0.923 0.91 0.160 1.218 D+E+B 8.30 9.204 4.97 0.983 1.216 A+B 8.30 9.204 1.163 "	pe J	\$								
28.04 9.286 5.68 1.144 1.06 0.189 E+B 17.06 5.177 7.21 1.331 1.47 0.240 1.163 "" 10.66 3.145 10.02 1.798 1.68 0.267 "" 8.33 2.44 11.35 2.022 1.70 0.268 1.120 "" 6.25 1.82 12.36 2.187 1.87 0.293 "" 4.17 1.20 13.28 2.331 2.04 0.317 "" 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 "" 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 "" 2.08 0.596 14.25 2.486 2.23 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 "" 0.90 0.23 0.36 0.055 3.27 0.442 "" 0.90 0.23 0.36 0.055 3.27 0.442 "" 1.67 0.423 0.355 0.0547 3.51 0.479 "" 2.44 0.623 0.355 0.0547 3.51 0.479 "" 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 2.541 0.61 3.441 0.23 0.038 1.94 0.285 "" 12.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	1.8.04 9.286 5.68 1.144 1.06 0.189 E+B	8.04 9.286 5.68 1.144 1.06 0.189 E+B 7.06 5.177 7.21 1.331 1.47 0.240 1.163 " 0.66 3.145 10.02 1.798 1.68 0.267 " 0.66 3.145 10.02 1.798 1.68 0.267 " 0.625 1.82 12.36 2.187 1.87 0.293 " 0.417 1.20 13.28 2.331 2.04 0.317 " 0.208 0.596 14.25 2.484 2.22 0.342 1.1002 " 0.45 0.11 0.42 0.064 3.97 0.539 " 0.45 0.11 0.42 0.064 3.97 0.539 " 0.46 0.623 0.355 0.0547 3.51 0.479 " 0.47 0.49 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 0.49 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 0.49 0.053 3.43 0.475 " 0.49 0.053 3.43 0.475 " 0.99 0.29 0.047 0.85 0.045 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 0.29 0.047 0.85 0.405 " 0.99 9.415 0.33 0.036 0.011 1.44 0.236 E+D+C 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103										
28.04 9.286 5.68 1.144 1.06 0.189 E+B 17.06 5.177 7.21 1.331 1.47 0.240 1.163 "" 18.33 2.44 11.35 2.022 1.70 0.268 1.120 "" 6.25 1.82 12.36 2.187 1.87 0.293 "" 6.25 1.82 12.36 2.187 1.87 0.293 "" 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 "" 2.08 0.596 14.25 2.484 2.22 0.342 1.1002 "" 2.08 0.596 14.25 2.486 2.22 0.342 1.1002 "" 2.09 0.23 0.36 0.055 3.27 0.442 "" 0.90 0.23 0.36 0.055 3.27 0.442 "" 0.90 0.23 0.36 0.055 3.27 0.442 "" 0.90 0.23 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.43 0.475 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 2.544 0.623 0.35 0.054 3.75 0.515 1.0257 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 3.40 0.432 "" 3.72 0.957 0.34 0.053 0.054 3.75 0.442 "" 3.753 1.99 0.29 0.047 2.85 0.405 "" 3.753 1.99 0.29 0.047 2.85 0.405 "" 3.753 1.99 0.29 0.047 2.85 0.405 "" 3.753 1.99 0.29 0.047 2.85 0.405 "" 3.753 1.99 0.29 0.047 2.85 0.405 "" 3.753 1.99 0.29 0.047 2.85 0.405 "" 3.754 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.40	1.8.04 9.286 5.68 1.144 1.06 0.189 E+B	8.04 9.286 5.68 1.144 1.06 0.189 E+B 7.06 5.177 7.21 1.331 1.47 0.240 1.163 " 0.66 3.145 10.02 1.798 1.68 0.267 " 0.66 3.145 10.02 1.798 1.68 0.267 " 0.625 1.82 12.36 2.187 1.87 0.293 " 0.417 1.20 13.28 2.331 2.04 0.317 " 0.208 0.596 14.25 2.484 2.22 0.342 1.1002 " 0.45 0.11 0.42 0.064 3.97 0.539 " 0.45 0.11 0.42 0.064 3.97 0.539 " 0.46 0.623 0.355 0.0547 3.51 0.479 " 0.47 0.49 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 0.49 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 0.49 0.053 3.43 0.475 " 0.49 0.053 3.43 0.475 " 0.99 0.29 0.047 0.85 0.045 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 1.29 0.32 0.050 3.10 0.432 " 0.99 0.29 0.047 0.85 0.405 " 0.99 9.415 0.33 0.036 0.011 1.44 0.236 E+D+C 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	10 rc	ES								
15.21 2.632 2.39 0.366 1.0982 B+E	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	ra h1	••								
15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 12.61 3.441 0.23 0.038 1.94 0.285 " 12.61 3.441 0.23 0.038 1.94 0.285 " 22.44 7.731 0.06 0.011 1.44 0.236 E+D+C 22.99 9.415 0.33 0.056 E+D+C 11.07	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	or te									
15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 12.61 3.441 0.23 0.038 1.94 0.285 " 12.61 3.441 0.23 0.038 1.94 0.285 " 22.44 7.731 0.06 0.011 1.44 0.236 E+D+C 22.99 9.415 0.33 0.056 E+D+C 11.07	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	11 a 5	င္ပ								
15.21	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	i e z	ğ								
15.21 2.632 2.39 0.366 1.0982 B+E	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	, i	Ħ								
15.21 2.632 2.39 0.366 1.0982 B+E	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	Ω ω;	ξ.								
15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 12.61 3.441 0.23 0.038 1.94 0.285 " 12.61 3.441 0.23 0.038 1.94 0.285 " 22.44 7.731 0.06 0.011 1.44 0.236 E+D+C 22.99 9.415 0.33 0.056 E+D+C 11.07	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.661 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D 1.08 KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	15.21 2.632 2.39 0.366 1.0982 B+E 0.49 0.075 4.68 0.637 1.0179 E+C 0.45 0.11 0.42 0.064 3.97 0.539 " 0.90 0.23 0.36 0.055 3.27 0.442 " 1.67 0.423 0.355 0.0547 3.51 0.479 " 2.44 0.623 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	70.	رق ا								
1.67	0.50 0.75 0.75 0.75 0.75 0.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.957 0.34 0.053 3.43 0.475 1.699 1.29 0.32 0.050 3.10 0.432 1.753 1.99 0.29 0.047 2.85 0.405 1.261 3.441 0.23 0.038 1.94 0.285 1.261 3.441 0.23 0.038 1.94 0.285 1.25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 1.59.99 9.415 0.33 0.056 A+D 1.66 0.623 0.75 0.515 1.0257 1.75 1.0257 1.02	1.67	٠	_								
1.67	0.50 0.75 0.75 0.75 0.75 0.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.957 0.34 0.053 3.43 0.475 1.699 1.29 0.32 0.050 3.10 0.432 1.753 1.99 0.29 0.047 2.85 0.405 1.261 3.441 0.23 0.038 1.94 0.285 1.261 3.441 0.23 0.038 1.94 0.285 1.25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 1.59.99 9.415 0.33 0.056 A+D 1.66 0.623 0.75 0.515 1.0257 1.75 1.0257 1.02	1.67	1									
1.67	0.50 0.75 0.75 0.75 0.75 0.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.957 0.34 0.053 3.43 0.475 1.699 1.29 0.32 0.050 3.10 0.432 1.753 1.99 0.29 0.047 2.85 0.405 1.261 3.441 0.23 0.038 1.94 0.285 1.261 3.441 0.23 0.038 1.94 0.285 1.25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 1.59.99 9.415 0.33 0.056 A+D 1.66 0.623 0.75 0.515 1.0257 1.75 1.0257 1.02	1.67	Ţ									
1.67	0.50 0.75 0.75 0.75 0.75 0.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.423 0.355 0.0547 3.51 0.479 1.67 0.957 0.34 0.053 3.43 0.475 1.699 1.29 0.32 0.050 3.10 0.432 1.753 1.99 0.29 0.047 2.85 0.405 1.261 3.441 0.23 0.038 1.94 0.285 1.261 3.441 0.23 0.038 1.94 0.285 1.25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 1.59.99 9.415 0.33 0.056 A+D 1.66 0.623 0.75 0.515 1.0257 1.75 1.0257 1.02	1.67)4-									
1.07	1.07 0.423 0.35 0.054 3.75 0.515 1.0257 " 3.72 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.61 3.441 0.23 0.038 1.94 0.285 " 12.14 6.195 0.12 0.021 1.61 0.254 " 12.5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 12.9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	1.07	. •									
1.023	2.7. 0.957 0.34 0.053 3.43 0.475 " 4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 21.14 6.195 0.12 0.021 1.61 0.254 " 25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 29.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	3.72	_									
4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 12.61 3.441 0.23 0.038 1.94 0.285 " 21.14 6.195 0.12 0.021 1.61 0.254 " 25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 29.99 9.415 0.33 0.056 A+D A = KC1: B = KC103; C = KC10A; D - NKC1.mKC10A; E - nKC10A.mKC102	4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 22.61 3.441 0.23 0.038 1.94 0.285 " 21.14 6.195 0.12 0.021 1.61 0.254 " 25.41 7.731 0.06 0.011 1.44 0.236 E+D+C 29.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	4.99 1.29 0.32 0.050 3.10 0.432 " 7.53 1.99 0.29 0.047 2.85 0.405 " 2.61 3.441 0.23 0.038 1.94 0.285 " 1.14 6.195 0.12 0.021 1.61 0.254 " 5.41 7.731 0.06 0.011 1.44 0.236 E+D+C 9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103										
29.99 9.415 0.33 0.056 A+D 0.65 A+D 0.65 A+D 0.65 0.33 0.056 A+D 0.65 0.33 0.056 0.056 0.33 0.056 0.356 0.056 0.356 0.056 0.356 0.056 0.356 0.056	A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	보 25의									
29.99 9.415 0.33 0.056 A+D 0.65 A	A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	96. 1	į								
29.99 9.415 0.33 0.056 A+D 0.65 A+D 0.65 A+D 0.65 0.33 0.056 A+D 0.65 0.33 0.056 0.056 0.33 0.056 0.356 0.056 0.356 0.056 0.356 0.056 0.356 0.056	A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.5									
29.99 9.415 0.33 0.056 A+D 0.65 A+D 0.65 A+D 0.65 0.33 0.056 A+D 0.65 0.33 0.056 0.056 0.33 0.056 0.356 0.056 0.356 0.056 0.356 0.056 0.356 0.056	A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	- U0 Va						-			
29.99 9.415 0.33 0.056 A+D 0.65 A	A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	27. 4		11							
29.99 9.415 0.33 0.056 A+D 0.65 A	A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	9.99 9.415 0.33 0.056 A+D A = KC1; B = KC103; C = KC104; D - NKC1.mKC104; E - nKC104.mKC103	17. A.	į					0.011			
	7 101, 5 10103, 6 10104, 5 1110104, E 1110104, E 1110104	11 1 16104, 1 16104, 1 16104. 1 16104. 1 16104. 1 16104. 1 16104. 1 16104. 1 16104. 1 16104. 1 16104. 1 16104.	F. Khi 019 160		A+D		0.056	0.33			9.415	29.99
	9, 14, Eng.	9, 14, 2211 Engl. T				.mKC103	E - nKC104	NKC1.mKC104;	KC104; D - 1)3; C =	B = KC10	a A = KC]

- (1) Potassium chloride; KCl; [7447-40-7]
- (2) Potassium chlorate; KClO3; [3811-04-9]
- (3) Rubidium chloride; RbC1; [7791-11-9]
- (4) Rubidium chlorate; RbC103; [13446-71-4]
- (5) Water; H₂0; [7732-18-5]

PREPARED BY:

Hiroshi Miyamoto

ORIGINAL MEASUREMENTS:

Kuzina, V.A.

Arkhipov, S.M.; Kashina, N.I.;

Zh. Neorg. Khim. <u>1969</u>, 14, 567-70; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1969</u>, 14, 294-6.

VARIABLES:

Composition at 298.2 K

EXPERIMENTAL VALUES:

Experimental data are given on the following page.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. KClO₃, RbClO₃, KCl, RbCl and water were mixed in glass test tubes held in a thermostat. The rate of rotation of the test tubes was 45 rev min⁻¹, and equilibrium was reached in 30 days. Specimens of the liquid phases were analyzed for potassium and rubidium by flame photometry. The chloride content was determined by titration of a specimen of the solution with silver nitrate and potassium chromate as indicator. The chlorate ion concentration was determined volumetrically by addition of excess iron(II) sulfate solution and back titration of the latter with potassium permanganate.

The solid phases were identified by the method of residues, crystal optics, and by X-ray diffraction.

SOURCE AND PURITY OF MATERIALS:

The purity of the salts used was 99.9 % or better.

ESTIMATED ERROR:

The relative error in potassium and rubidium determinations by flame photometry did not exceed $3-5\ \%$.

Temp: precision \pm 0.1 K (authors).

					n of saturated s	oracions a	L 25.0 C		କ୍ଷା	(3) (4) (5)	(2)
	Chloride		Chlorate	Rubidium			Chlorate	Nature of the	ER		<u> </u>
mass %	mol % (compiler)	mass %	mol % (compiler)	mass %	mol % (compiler)	mass %	mol % (compiler)	solid phase ^a	EXPERIMENTAL	Rubidium Rubidium Water; H	(2) Potassium
		6.52	1.05			3.58	0.418	A+B	FAL	er;	288
0.44	0.12	6.25	1.01			3.55	0.415	11			Ë
1.07	0.285	6.09	0.986			3.58	0.421	11	VALUES	I N3	
1.99	0.529	4.96	0.801			3.67	0.430	11	副	chloride chlorate 0; [7732	chlorate;
3.09	0.824	4.51	0.732			3.63	0.427	ti	Š	7 2 2	110
3.62	0.969	4.08	0.643			3.91	0.462	11	- 1	oride; orate; [7732-	ĭ
5.23	1.40	2.77	0.452			4.05	0.480	n	<u></u>	e e) TE
7.84	2.11	0.56	0.092			4.22	0.501	***	<u> </u>		••
11.47	3.216	0.61	0.10			5.14	0.636	11	51	RbC RbC	×
15.23	4.431			1.83	0.328	4.29	0.551	11	(Continued)	RbC1; [RbC10 ₃ ; 18-5]	кс10 ₃ ;
18.88	5.672			2.42	0.448	3.56	0.472	n	шe	ω ••	
L9.94	6.033			2.42	0.451	3.31	0.442	11	리	[7	
	0.033						0.442		1	[7791-11-9] 3; [13446-71	[3811-04-9]
				48.20	12.33	0.82	0.150	C+B	1	34	81
2.09	0.882			47.39	12.33	0.90	0.168	B+E	,	11); [3811-04-
4.29	1.704			41.19	10.08	0.94	0.16	11	ĵ	-9 -7	04
6.55	2.611			39.42	9.687	0.96	0.17	н			-9
7.78	3.057			37.28	9.030	0.97	0.17	11	į	4	ت
8.20	3.205			36.31	8.750	1.18	0.204	ŧI	1		
13.79	5.017			25.37	5.690	1.71	0.275	11		7h 19	Ku A
26.10	8.028	1.93	0.361					A+D		Zh. Neorg. Khím. Russ. J. Inorg. <u>1969</u> , 14, 294–6.	Kuzina, V
24.66	7.710	2.03	0.386	2.68	0.517			A+E	,	1.ec	a, p
23.02	7.245	2.11	0.404	4.66	0.904			11	1	2.72	4,5
22.51	7.098	2.00	0.384	5.39	1.05			11	ļ	, 5	
21.53	7.073			9.19	1.86	2.57	0.373	B+E	ļ	90° Z	A. Kasnina,
7.15	6.034			19.18	4.161	2.23	0.346	11	ļ	Khim. norg. 294-6.	٤
19.17	6.701			16.92	3.646	2.16	0.333	11	1	6, 3	-
7.82	6.209			17.93	3.852	2.10	0.323	"	1	. 1969, Chem.	á
1.48	4.321			30.47	7.071	1.30	0.216	11		6 6 m	50
11.63	4.392			30.56	7.115	1.32	0.220	11	Ī	. 10	ä
19.01	6.496			14.79	3.116	2.55	0.385	11	ļ	<u>@</u> →	
19.90	6.738			13.04	2.722	2.74	0.409	11	ļ	4. 25.	N. ⊢.
25.30	7.903	1.96	0.372	2.09	0.402		0.409 		1	€.5	; -
23.80	7.626	4.85	0.945	2.82	0.402			A+E		67- 17	:.
A = KCl	$D_3; B = R1$	oC10a:	C = RbC1;	D = KC1;	E = Solid sol	ution (K R	h) C1			14, 567-70; (Engl. Transl.	
, 1.01	- J,		. 1001,	, no.,	2 50114 501	.ucron (K, K	D/01			٤.)	
									- 1		

- (1) Potassium chlorate; KC103; [3811-04-9]
- (2) Potassium bromide; KBr; [7758-02-3]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.

J. Am. Chem. Soc. 1937, 59, 866-7.

VARIABLES:

Composition at 298.15 K

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:	Composition of	of saturated	solutions at 25	.00°C	
	KC103		KBr	Density	Nature of the
mass %	mo1 % (compiler)	mass %	mol % (compiler)	g cm ⁻³	solid phase ^a
7.905 ^b	1.246	0.00	0.00	1.047	Α
4.59	0.765	9.30	1.596	1.100	tt
3.21	0.570	16.99	3.105	1.160	**
2.41	0.458	24.20	4.733	1.216	11
1.87	0.384	31.66	6.700	1.292	11
1.42	0.320	39.47	9.151	1.376	11
1.43	0.324	40.00	9.340	1.385	A+B
1.42	0.322	40.01	9,342	1.386	rt .
1.37	0.311	40.06	9.354	1.387	n
1.42(Av	± .5) 0.322	40.01	9.342	1.385	11
0.00	0.000	40.63	9.388	1.380	В

 $^{^{}a}$ A = KC10₃;

soly of $KC10_3 = 0.7004 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Mixtures of known composition were stirred in a bath thermostatically controlled at 25°C for at least two days.

Potassium bromide was determined by titration with standard silver nitrate solution using Mohr's method. The total solid was determined by evaporation at 100°C followed by heating to 250°C. Potassium chlorate was calculated by difference.

SOURCE AND PURITY OF MATERIALS:

Nothing specified.

ESTIMATED ERROR:

Soly: nothing specified. Temp: precision \pm 0.02 K.

COMMENTS AND/OR ADDITIONAL DATA: The phase diagram is given below (based on mass %).

B = KBr

b For the binary system the compiler computes the following:

- (1) Potassium chlorate; KClO₃; [3811-04-9]
- (2) Potassium bromate; KBrO₃; [7758-01-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Swenson, T.; Ricci, J.E.

J. Am. Chem. Soc. 1939, 61, 1974-7.

VARIABLES:

Composition at 298 K

PREPARED BY:

Hiroshi Miyamto

EXPERIMENTAL	VALUES: Com	mposition of	saturated so	lutions at 25°C	
	KBr03	KC1	.03	Density	Nature of the
mass %	mol % (compiler)	mass %	mo1 % (compiler)	g cm ⁻³	solid phase ^a
7.533 ^b	0.8712	0	0	1.054	A
6.46	0.755	2.26	0.360	_	SSI
5.75	0.679	4.08	0.656	1.067	11
5.63	0.665	4.29	0.691	-	H
4.936	0.5916	6.546	1.069	1.078	SSI +SSII
4.945	0.5951	6.531	1.067	1.078	**
4.02	0.478	6.75	1.09	1.072	SSII
2.79	0.329	7.08	1.14	1.064	11
2.07	0.243	7.26	1.16	-	11
1.02	0.119	7.60	1.21	1.053	11
0	0	7.895 ^b	1.244	1.048	В

 $^{^{}a}$ A = KBr0₃; $B = KC10_3;$

SSI = solid solution containing up to 3 % KClO₃ in KBrO₃.

SSII = solid solution containing up to 5 % KBr03 in KCl03.

soly of $KC10_3 = 0.6995 \text{ mol kg}^{-1}$

soly of $KBr0_3 = 0.4878 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Solubilities were determined according to the usual procedure insofar as method of stirring sampling, filtering, density determination, and temperature control are concerned. Starting with complexes of known composition, and analyzing the saturated solutions at equilibrium, the solid phases were then determined by the methods of graphical or algebraic extrapolation, in addition to occasional analyses of wet and centrifuged residues. The analytical method for the saturated solutions depended on the combined percentage of the KC103 and KBr03. For large KBr03 compositions solutions were analyzed by evaporation, and iodometric titration of the bromate with thiosulfate solution thus allowing the calculation of the percentage of the chlorate by difference. In the presence of a large amount of chlorate, small quantities of bromate were determined as follows. To about 100 ml of solution was added 5 g of sodium iodide (20 ml of 25% solution) giving a concentration of 0.33N after dilution to 100 ml; 1.5 ml of concentrated HCl (0.18 to 0.2N after dilution); titration with 0.2N sodium thiosulfate solution to be started after continued....

SOURCE AND PURITY OF MATERIALS: High grade (99.9 %) potassium bromate was used as received. Potassium chlorate contained small amounts of the corresponding bromate; this bromate content was determined by iodometric titration and the necessary corrections were made when preparing the ternary complexes.

ESTIMATED ERROR:

Soly: precision 2 % (compiler).

Temp: nothing specified.

b For binary systems the compiler computes the following:

- (1) Potassium chlorate; KC103; [3811-04-9]
- (2) Potassium bromate; KBr03; [7758-01-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Swenson, T.; Ricci, J.E.

J. Am. Chem. Soc. 1939, 61, 1974-7.

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram is given below (based on mass %).

METHOD/APPARATUS/PROCEDURE: (Continued)

1.5 min.

The same conditions, using a 0.02 N sodium thiosulfate solution for titration and applying the time correction can be used for the detection of quantities as small as 0.001 ($^{\pm}$ 0.0005) % of bromate in chlorate.

- (1) Potassium chlorate; KClO₃; [3811-04-9]
- (2) Potassium iodide; KI; [7681-11-0]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.

J. Am. Chem. Soc. 1937, 59, 866-7.

VARIABLES:

Composition at 298.15 K

PREPARED BY:

Hiroshi Miyamoto

K	C10 ₃		KI		Nature of the	
mass %	mol % (compiler)	mass %	mol % (compiler)	g cm ⁻³	solid phase ^a	
7.905 ^b	1.246	0.00	0.00	1.047	A	
5.04	0.848	9.33	1.159	1.103	11	
3.35	0.612	18.74	2.528	1.178	11	
2.30	0.467	28.72	4.303	1.275	11	
1.60	0.370	39.26	6.695	1.400	11	
1.10	0.296	49.94	9.937	1.555	"	
0.82	0.255	58.34	13.39	1.702	tt	
0.81	0.256	59.27	13.84	1.724	A+B	
0.84	0.266	59.30	13.86	1.723	"	
0.84	0.266	59.26	13.84	1.725	"	
0.83	0.263	59.28	13.85	1.724	"	
0.64	0.212	59.36	13.85	1.724	В	
0.00	0.000	59.76	13.88	1.718	11	

^a $A = KC10_3$; B = KI

soly of $KC10_3 = 0.7004 \text{ mol kg}^{-1}$

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Mixtures of known composition were stirred in a bath thermostatically controlled at 25°C for at least two days.

Potassium iodide was titrated argentometrically by Fajans' method using eocin as an absorption indicator.

The total solid was determined by evaporation at 100°C followed by heating to 250°C. Potassium chlorate was calculated by difference.

SOURCE AND PURITY OF MATERIALS:

Nothing specified.

ESTIMATED ERROR:

Soly: nothing specified. Temp: precision \pm 0.02 K.

b For the binary system the compiler computes the following:

- (1) Potassium chlorate; KClO3; [3811-04-9]
- (2) Potassium iodate; KIO3; [7758-05-6]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.

J. Am. Chem. Soc. 1938, 60, 2040-3.

VARIABLES: T/K = 298, 323

PREPARED BY:

Hiroshi Miyamoto

Composition

EXPERIMENTAL	VALUES:	Compositi	on of satur	ated solution	s	
	I	KIO ₃	KC10	93	Density	Nature of the
t/°C	mass %	mo1 %	mass %	mo1 %	g cm ⁻³	solid phase ^a
		(compiler)		(compiler)		
25	8.45 ^b	0.771	0.00	0.000	1.043	Α
	7.05	0.648	2.31	0.371	1.070	11
	5.85	0.547	5.31	0.866	1.082	11
	5.43	0.512	6.78	1.117	1.091	A+B
	5.44	0.513	6.79	1.119	1.092	11
	5.44	0.513	6.81	1.122	1.089	11
	5.42	0.511	6.81	1.122	1.086	11
	5.43	0.512	6.80	1.120	1.090(av)	11
	2.92	0.270	7.31	1.180	1.068	В
	0.00	0.000	7.90	1.245	1.048	"
50	13.21 ^b	1.265	0.00	0.000		A
	10.87	1.053	3.71	0.628		11
1	8.76	0.871	8.58	1.490		"
	7.261	0.749	13.76	2.479		A+B
	7.27	0.750	13.77	2.481		11
	7.27	0.750	13.77	2.481		tt .
	7.27	0.750	13.77(av)	2.481		11
	5.27	0.535	14.31	2.536		В
	2.41	0.239	15.11	2.616		''
	0.00	0.000	15.78	2.681		"
					continued	1

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Mixtures of KI03, KCl03 and $\rm H_20$ were stirred for 5-7 days.

The iodate content was determined by treatment with excess potassium iodide and a limited amount of acetic acid, and titration of the liberated iodine with standard thiosulfate solution. The total dissolved solid was determined by evaporation to dryness, and the chlorate salt calculated by difference.

SOURCE AND PURITY OF MATERIALS: Potassium iodate (c.p. grade) was recrystal-lized and dried at 100-110°C. Analysis by titration with standard sodium thiosulfate solution showed it to be 100.0 % pure. Potassium chlorate (c.p. grade) was powdered, and then dried at 150-200°C.

ESTIMATED ERROR:

Soly: nothing specified. Temp: precision \pm 0.01 K.

- (1) Potassium chlorate; KC103; [3811-04-9]
- (2) Potassium iodate; KIO3; [7758-05-6]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ricci, J.E.

J. Am. Chem. Soc. 1938, 60, 2040-3.

EXPERIMENTAL VALUES: (Continued)

^a
$$A = KIO_3;$$
 $B = KC1O_3$

 $^{\mbox{\scriptsize b}}$ For the binary system the compiler computes the following:

soly of
$$KIO_3 = 0.431 \text{ mol kg}^{-1}$$
 at 25°C

 $= 0.7112 \text{ mol kg}^{-1} \text{ at } 50^{\circ}\text{C}$

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram is given below (based on mass % units).

Potassiur	n Chlorate	14
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Potassium chlorate; KC10 ₃ ; [3811-04-9]	Bronsted, J.N.	
(2) Potassium hydroxide; KOH; [1310-58-3]	J. Am. Chem. Soc. <u>1920</u> , 40, 1448-54.	
(3) Water; H ₂ 0; [7732-18-5]		
VARIABLES:	PREPARED BY:	
Concentration of potassium hydroxide		
T/K = 293	Hiroshi Miyamoto	
EXPERIMENTAL VALUES:		
Concn of KOH	Soly of KC103	
$mo1/dm^{-3}$	mol dm ⁻³	
4.71	0.0924	
5.06	0.0882	
6.35	0.0609	
7.95	0.0445	
8.60	0.0410	
9.41	0.0351	
10.95	0.0287	
12.19	0.0254	
14.02	0.0215	
14.85	0.0195	
15.02	0.0191	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
No details given.	Nothing specified.	
	ESTIMATED ERROR:	· · · · ·
	Nothing specified.	
	PURPLEWOUS	
	REFERENCES:	

- (1) Potassium chlorate; KC103; [3811-04-9]
- (2) Rubidium chlorate; RbClO3; [13446-71-4]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Kirgintsev, A.N.; Kashina, N.I.; Vulikh, A.I.; Korotkevich, B.I.

Zh. Neorg. Khim. 1965, 10, 1225-8; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 662-4.

VARIABLES:

Composition

T/K = 298.2

PREPARED BY:

Hiroshi Miyamoto

	on at 25.0°C	aturated solut	mposition of s	VALUES: Co	PERIMENTAL V
hlorate	rubidium	e	assium chlorat	pot	otal salts
mass % ^b	$g_2/100 g_3$	mass % ^b	$g_1/100 g_3$	y_1^a	$mol\ kg^{-1}$
6.24	6.65	0.0	0.0	0.0	3.94
5.65	5.99	1.35	1.37	0.24	4.76
5.33	5.64	2.10	2.15	0.34	5.11
5.14	5.43	2.35	2.41	0.38	5.18
5.00	5.26	2.37	2.43	0.39	5.11
4.80	5.04	3.41	3.53	0.49	5.85
4.64	4.87	3.76	3.91	0.53	6.07
3.59	3.72	6.68	6.16	0.73	8.04
3.27	3.38	7.24	7.81	0.76	8.40
3.27	3.38	7.29	7.86	0.76	8.41
3.16	3.26	7.31	7.89	0.77	8.40
3.79	3.94	6.76	7.25	0.72	8.25
3.93	4.09	6.63	7.10	0.70	8.23
3.83	3.98	6.77	7.26	0.72	8.28
3.57	3.70	7.02	7.55	0.74	8.35
2.93	3.02	7.30	7.88	0.78	8.22
1.47	1.49	7.60	8.22	0.88	7.59
0.94	0.95	7.54	8.15	0.92	7.21
0.0	0.0	7.91	8.59	1.0	6.98
0.0	0.0	7.92	8.60	1.0	7.02

 $y_1 = mol$ fraction of KClO3 in mixture of chlorates.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: Solubilities were determined by the method

of isothermal relief of supersaturation. Weighed amounts of chlorates were dissolved in water in 50 cm³ test tubes by heating in a water bath at 65-70°C: the test tubes were then placed in a thermostat at 25°C for 20 m. Supersaturation was removed by stirring at a rate of 60 rev min-1 for 10 h. After settling, 2 samples of liquid phase were removed for analysis. The first was evaporated in a drying cupboard at $70-80^{\circ}\text{C}$ and dried to constant weight at 105°C. The other sample was analyzed for Clo3 by adding FeSO4 solution and back-titrating excess iron(II) with permanganate solution. Solid phase compositions were not reported.

SOURCE AND PURITY OF MATERIALS:

The purity of chlorates used was 99.9 % or better.

ESTIMATED ERROR:

Soly: accuracy of $y_1 \pm 0.01$ (authors). Temp: precision \pm 0.1 K (authors).

^b Calculated by the compiler.

- (1) Potassium chlorate; KClO3; [3811-04-9]
- (2) Cesium chlorate; CsClO₃; [13763-67-2]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Kirgintsev, A.N.; Kashina, N.I.; Vulikh, A.I.; Korotkevich, B.I.

Zh. Neorg. Khim. 1965, 10, 1225-8; Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 662-4.

VARIABLES:

Composition

T/K = 298.2

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:

Composition of saturated solutions at 25°C

total salts	р	otassium chloi	rate	cesium ch	lorate
mol kg ⁻¹	y_1^a	$g_1/100 g_3$	mass %b	$g_2/100 g_2$	mass %b
3.59	0.00	0.00	0.00	7.76	7.20
4.39	0.34	1.83	1.80	6.28	5.90
5.49	0.54	3.63	3.50	5.46	5.18
6.60	0.64	5.18	4.92	5.14	4.89
7.85	0.72	6.93	6.48	4.76	4.54
8.38	0.75	7.73	7.17	4.54	4.34
8.35	0.74	7.57	7.03	4.70	4.49
8.29	0.75	7.62	7.08	4.48	4.29
7.73	0.82	7.78	7.22	3.01	2.92
7.01	0.94	8.03	7.43	0.99	0.98
6.98	1.00	8.59	7.91	0.00	0.00

a y_1 = mol fraction of KC103 is mixture of chlorates.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Solubility in this system was studied by the isothermal relief of supersaturation method. Weighed amounts of chlorates were dissolved in water in 50 cm³ test tubes by heating on a water bath at 65-70°C; the test-tubes were then placed in a thermostat at 25°C for 20 min. Supersaturation was then removed by stirring at 60 rpm for 10 h. After settling two samples of liquid phase were removed for analysis. The first was evaporated in a drying cupboard at 70-80°C and then dried to constant weight at 105°C. The other sample was analyzed for ClO³ by adding FeS04 solution and back-titrating excess iron(ID) with permanganate solution. Solid phase compositions not reported.

SOURCE AND PURITY OF MATERIALS:

The purity of chlorates used was 99.9 % or better.

ESTIMATED ERROR:

Soly: accuracy of $y_1 \pm 0.01$ (authors). Temp: precision ± 0.1 K (authors).

b calculated by the compiler.

COMPONENTS: (1) Potassium chlorate; KC103; [3811-04-9] (2) Calcium chlorate; Ca(C103)2; [10137-74-3] (3) Water; H₂0; [7732-18-5] VARIABLES: Composition T/K = 298 CRIGINAL MEASUREMENTS: Kirgintsev, A.N.; Kozitskii, V.P. Zh. Neorg. Khim. 1968, 13, 3342-45; Russ. J. Inorg. Chem. (Engl. Transl.) 1968, 13, 1723-5. PREPARED BY: Hiroshi Miyamoto

EXPERIMENTAL VALUES:

	Composition of potassium	n chlorate		
y ₁ ^a	mass %	mol % (compiler)	mass %	mo1 % (compiler)
1.000	7.87 ^c	1.24	0	0
0.900	7.23	1.15	1.36	0.128
0.816	6.52	1.04	2.49	0.235
0.665	5.60	0.906	4.75	0.455
0.518	4.76	0.785	7.50	0.733
0.438	4.24	0.708	9.20	0.910
0.210	2.73	0.491	17.38	1.85
0.104	1.83	0.363	26.64	3.13
0.103	1.81	0.359	26.63	3.13
0.068	1.47	0.318	33.73	4.32
0.054	1.17	0.254	34.35	4.42
0.052	1.25	0.287	38.31	5.21
0.034	1.14	0.342	54.81	9.74
0.033	1.20	0.387	58.42	11 1/

The mole fraction of potassium chlorate based on moles $KC10_3$ and $Ca(C10_3)_2$.

In mol \mbox{kg}^{-1} units, the authors report the solubility of KClO3 in terms of the following smoothing equation.

 $\log m_1 = -0.157 - 0.778 \log y_1 - 0.302 (1-y_1)$

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Solubility was measured by the method of isothermal relief of supersaturation. Equilibrium was reached in 6-8 hours. The apparatus for the solubility determination is shown in figure below.

SOURCE AND PURITY OF MATERIALS:

"Analytical reagent" grade calcium chlorate and potassium chlorate were used.

ESTIMATED ERROR:

Soly: nothing specified.

Temp: precision ± 0.05 K (authors).

Samples of satd sin to be analyzed were placed in container 1 which had been previously weighed together with the filter stick. Sodium tetraphenylborate solution was added dropwise over a period of 30 min. The precipitate was allowed to settle, and the mother-liquor withdrawn through the filter stick and transferred into beaker 4 through the fine polyvinly chloride tube 3. The precipitate was washed twice with 0.06 % aqueous sodium tetraphenylborate, then four or five times with a few millilitres of distilled water. The container with the precipitate and filter stick was dried for 1.5 hours at 105°C, cooled and weighed.

The calcium content of the solution in beaker 4 was determined by titration with Trilon B.

- (1) Potassium chlorate; KC10₃; [3811-04-9]
- (2) Ethanol, C₂H₆O; [64-17-5]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Taylor, A.E.

J. Phys. Chem. 1897, 1, 718-33.

VARIABLES:

Concentration of ethanol T/K = 303 and 313

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:

	Concn of	ethanol		Solubility		
t/°C	mass %	mo1 % (compile	g/g satd soln r)	mo1 % (compiler)	g/g H ₂ O	mol kg ^{-l} (compiler)
30	0	0	0.0923	1.47	0,1017	0.8299
	5	2	0.0772	1.21	0.0880	0.718
	10	4.2	0.0644	1.00	0.0765	0.624
	20	8.9	0.0451	0,690	0.0590	0.481
	30	14	0.0321	0.485	0.0474	0.387
	40	21	0.0235	0.352	0.0400	0.326
	50	28	0.0164	0.245	0.0333	0.272
	60	37	0.0101	0.150	0.0253	0.206
	70	48	0.0054	0.080	0.0182	0.149
	80	61	0.0024	0.035	0.0122	0.100
	90	78	0.0006	0.009	0.0062	0.051
40	0	0	0.1223	2.007	0.1393	1.136
	5	2	0.1048	1.691	0.1233	1.006
	10	4.2	0.0884	1.405	0.1077	0.879
	20	8.9	0.0640	0.995	0.0856	0.698
	30	14	0.0467	0.715	0.0700	0.571
	40	21	0.0341	0.516	0.0588	0.480
	50	28	0.0241	0.362	0.0494	0.403
	60	37	0.0146	0.217	0.0369	0.301
	70	48	0.0078	0.115	0.0263	0.215
	80	61	0.0034	0.050	0.0173	0.141
	90	78	0.0012	0.018	0.0117	0.095

continued....

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Small bottles containing the aqueous alcohol and a large excess of powdered salt were placed in an Ostwald thermostat for about half a day at a temperature some ten degrees higher than that at which the solubility was to be determined. During this time, the bottles were shaken frequently and thoroughly. The temperature was lowered and maintained at the desired value for about a day. The solubility was very nearly constant at the end of 3 days, but at least six days were required for many solutions.

About 5 cm³ of the saturated solution were withdrawn using a pipet and weighed. The solution was evaporated to dryness and weighed.

SOURCE AND PURITY OF MATERIALS:

Potassium chlorate was recrystallized two or three times and dried in an air bath. Ethanol was distilled from lime, stored over dehydrated copper sulfate for one or two days, and finally distilled.

ESTIMATED ERROR:

Soly: accuracy 0.1 % (author). Temp: nothing specified.

- (1) Potassium chlorate; KC103; [3811-04-9]
- (2) Ethanol; C₂H₆O; [64-17-5]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Taylor, A.E.

J. Phys. Chem. 1897, 1, 718-33.

EXPERIMENTAL VALUES: (Continued)

Fitting equations were given as:

- (1) The concentration of ethanol: 0 40 mass %
 - $-\log w = (1/1.57) \times 2.260 + \log (x + 0.20)$ at 30°C
 - $\log \omega = (1/1.57) \times 2.000 + \log (x + 0.22)$ at 40° C
- (2) The concentration of ethanol: 50 90 mass %
 - $\log w = (1/1.2) \times 1.690 + \log (x + 0.20)$ at 30°C
 - $\log w = (1/1.2) \times 1.482 + \log (x + 0.22)$ at 40° C

where $\ensuremath{\boldsymbol{w}}$ is the amount of salt in one gram of water,

and x is the amount of alcohol in one gram of water.

COMPONENTS: (1) Potassium chlorate: KC103; [3811-04-9] Holm, K. (2) 1,2,3-Propanetriol (glycerol); C3H80; [56-81-5] (3) Water; H20; [7732-18-5] VARIABLES: T/K = 293 ORIGINAL MEASUREMENTS: Holm, K. Pharm. Weekblad 1921, 58, 1033-7.1 PREPARED BY: T.P. Dirkse

EXPERIMENTAL VALUES:

glycerol composition solubility KC10₃
mass %^a g/100 g glycerol^b
86.5 1.32
98.5 1.03

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Isothermal method used with approach from above and below. An excess of dried powdered salt was added to the glycerol-water mixture in a flask, and the cork covered with a layer of paraffin. One set of flasks were agitated in the constant temperature bath while another set of flasks were first heated to 90°C for 1 hour before equilibrating at 20°C. Attainment of equilibrium required weeks to months. Method of analyses not specified.

SOURCE AND PURITY OF MATERIALS:

Two glycerol-water mixtures were prepd with specific gravities of 1.2326 and 1.2645 at 15°C. The compositions of these mixtures were given as 86.5 % and 98.5 % glycerol, respectively (the compiler assumes these are mass % values).

No other information given.

ESTIMATED ERROR:

Soly: nothing specified.

Temp: precision \pm 0.05-0.1 K (author).

REFERENCES:

The data in this paper were also presented at a meeting and published in Pharm.
 Weekblad before the full paper was published.
 Holm, K. Pharm. Weekblad 1921, 58, 860-2.
 The paper was read by a Mr. Kok on behalf of Mr. Holm.

 $^{^{}m a}$ Author only specified % glycerol, and the compiler assumes this to mean mass %.

b Presumably this refers to grams of KClO3 per 100 grams of the mixed solvent.

- (1) Potassium chlorate; KC103; [3811-04-9]
- (2) 2-Propanone (acetone); C₃H₆O; [67-64-1] J. Phys. Chem. 1897, 1, 718-33.
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Taylor, A.E.

VARIABLES:

Concentration of acetone

T/K = 303 and 313

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL VALUES:

t/°C	Concn of mass %	Acetone mol % (compiler)	g/g satd soln	Solubility mol % (compiler)	g/g H ₂ 0	mol kg ⁻¹ (compiler)
30	0 5	0	0.0923	1.47	0.1017	0.8299
	5	1.6	0.0832	1.32	0.0956	0.7801
	9.09	3.01	0.0763	1.20	0.0909	0.7417
	20	7.2	0.0609	0.944	0.0810	0.6610
	30	12	0.0493	0,757	0.0740	0.6038
	40	17	0.0390	0.593	0.0676	0.5516
	50	24	0.0290	0.437	0.0598	0.4880
	60	32	0.0203	0.304	0.0517	0.4219
	70	42	0.0124	0.184	0.0418	0.3411
	80	55	0.0057	0.084	0.0288	0.2350
	90	74	0.0018	0.027	0.0182	0.1485
40	0	0	0.1223	2.026	0.1393	1.137
	0 5	1.6	0.1110	1.802	0.1311	1.070
	9.09	3.01	0.1028	1.656	0.1260	1.028
	20	7.2	0.0827	1.31	0.1126	0.9188
	30	12	0.0669	1.04	0.1024	0.8356
	40	17	0.0536	0.826	0.0945	0.7711
	50	24	0.0403	0.614	0.0840	0.6854
	60	32	0.0286	0.431	0.0735	0.5998
	70	47	0.0286	0.251	0.0568	0.4635
	80	55	0.0079	0.117	0.0397	0.3240
	90	74	0.0024	0.035	0.0245	0.1999

continued....

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Small bottles containing the aqueous acetone and a large excess of powdered salt were placed in an Ostwald thermostat for about half a day at a temperature some ten degrees higher than that at which the solubility was to be determined. During this time the bottles were shaken frequently and thoroughly. The temperature was lowered and maintained at the desired value for about a day. The solubility was very nearly constant at the end of three days, but at least six days were required for many solutions. About 5 cm3 of the saturated solution were withdrawn using a pipet and weighed. The solution was evaporated to dryness and weighed.

SOURCE AND PURITY OF MATERIALS:

Potassium chlorate was recrystallized two or three times and dried in an air bath. Acetone was purified by distillation.

ESTIMATED ERROR:

Soly: accuracy 0.1 %. Temp: nothing specified.

- (1) Potassium chlorate; KClO₃; [3811-04-9]
- (2) 2-Propanone (acetone); C₃H₆O; [67-64-1]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Taylor, A.E.

J. Phys. Chem. 1897, 1, 718-33.

EXPERIMENTAL VALUES: (Continued)

Fitting equations were given as follows:

- (1) The concentration of acetone; 0 50 mass %
 - $-\log w = (1/3.6) \times 4.273 + \log (x + 0.20)$ at 30°C
 - $\log w = (1/3.6) \times 3.640 + \log (x + 0.22)$ at 40° C
- (2) The concentration of acetone; 60 90 mass %
 - $-\log w = (1/1.55) \times 1.760 + \log (x + 0.20)$ at 30°C
 - $-\log w = (1/1.55) \times 1.525 + \log (x + 0.22)$ at 40° C

where y is the amount of salt in one gram of water, and x is the amount of acetone in one gram of water.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Potassium chlorate; KClO₃; [3811-04-9] Hartley, G.S. 2-Propanone (acetone); C2H60; Trans. Faraday Soc. 1931, 27, 10-29. [67-64-1] (3) Water; H₂0; [7732-18-5] VARIABLES: PREPARED BY: T/K = 290.8Hiroshi Miyamoto Concentration of acetone

EXPERIMENTAL	VALUES:				
	acetone		potassium chlorate		
t/°C	N ₂ a	mass % (compiler)	N_1^b	mass % (compiler)	mol/kg ⁻¹ (compiler)
17.6	0.0000	0.00	0.00953	6.14	0.534
	0.0233	7.14	0.00847	5.24	
	0.0409	12.1	0.00779	4.67	
	0.0513	14.8	0.00740	4.04	

^a Mole ratio of acetone in the mixture of acetone and water

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Excess recrystallized potassium chlorate was placed in tubes with weighed amounts of water and acetone. The tube was placed in a thermostat and agitated from time to time for several days. Samples of the liquid were quickly transferred to weighed flasks fitted with stoppers. The potassium chlorate samples were carefully evaporated to dryness and weighed.

SOURCE AND PURITY OF MATERIALS:

Potassium chlorate was recrystallized. No other information given.

ESTIMATED ERROR:

Nothing specified.

b Mole fraction of solute in saturated solution.